metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qian-Yong Cao,^a Li-Qun Huang,^a Zhong-Wei Wang,^b Chang-Jian Yang^a and Xi-Cun Gao^a*

^aDepartment of Chemistry, Nanchang University, Nanchang 330047, People's Republic of China, and ^bSchool of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266555, People's Republic of China

Correspondence e-mail: xcgao@ncu.edu.cn

Key indicators

Single-crystal X-ray study T = 294 KMean σ (C–C) = 0.009 Å R factor = 0.048 wR factor = 0.110 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris[4-(3-methyl-4-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-4-ylidene)isobutanolato- $\kappa^2 O$,O']bis(tri-phenylphosphine oxide- κO)europium(III)

In the title complex, $[Eu(C_{14}H_{15}N_2O_2)_3(C_{18}H_{15}OP)_2]$, the Eu^{III} ion is surrounded by eight O atoms, six from the β -diketonate ligands and two from the triphenylphosphine oxides, with a distorted triangular dodecahedral coordination.

Received 19 September 2005 Accepted 24 October 2005 Online 31 October 2005

Comment

Metal complexes are good electroluminescent materials (Tang & Vanslyke, 1987). As some europium and terbium complexes have been well studied (Kido & Okamota, 2002), we prepared the title Eu^{III} complex, (I), and present its structure here.

The molecular structure of (I) is shown in Fig. 1. The Eu^{III} ion is surrounded by eight O atoms, six from the β -diketonate ligands and two from the triphenylphosphine oxides. Using the criterion established by Haigh (1995), the coordination polyhedron can be described as a distorted triangular dodecahedron. The Eu–O distances (Table 1) are normal (Pettinari *et al.*, 2004). They are a little longer than the Tb–O distances [2.260 (2)–2.373 (2) Å] found in the related Tb^{III} complex (Xin *et al.*, 2003).

Experimental

An aqueous solution (10 ml) of $EuCl_3$ (1 mmol) was added dropwise to an ethanol solution (50 ml) of 1-phenyl-3-methyl-4-isobutyryl-5pyrazolone (3 mmol), triphenylphosphine oxide (2 mmol) and NaOH (3 mmol). The solution was refluxed for 1 h to yield a white precipitate. Colorless crystals of (I) were obtained by recrystallization from an ethanol solution.

```
Crystal data
```

$$\begin{split} & [\text{Eu}(\text{C}_{14}\text{H}_{15}\text{N}_2\text{O}_2)_3(\text{C}_{18}\text{H}_{15}\text{OP})_2] \\ & M_r = 1438.34 \\ & \text{Monoclinic, } P2_1/n \\ & a = 13.3872 \ (14) \text{ Å} \\ & b = 23.187 \ (2) \text{ Å} \\ & b = 23.130 \ (2) \text{ Å} \\ & \beta = 91.890 \ (2)^{\circ} \\ & V = 7175.7 \ (13) \text{ Å}^3 \\ & Z = 4 \end{split}$$

 $D_x = 1.331 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 5765 reflections $\theta = 2.3-21.3^{\circ}$ $\mu = 0.98 \text{ mm}^{-1}$ T = 294 (2) K Block, colorless $0.20 \times 0.18 \times 0.16 \text{ mm}$

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.815, T_{\max} = 0.855$ 41976 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.048$
$wR(F^2) = 0.110$
S = 0.98
15550 reflections
865 parameters

15550 independent reflections 8316 reflections with $I > 2\sigma(I)$ $R_{int} = 0.081$ $\theta_{max} = 27.0^{\circ}$ $h = -7 \rightarrow 17$ $k = -29 \rightarrow 29$ $l = -27 \rightarrow 29$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0389P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.82 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.66 \text{ e} \text{ Å}^{-3}$

Table 1Selected geometric parameters (Å, °).

Eu1-O1	2.391 (3)	Eu1-O5	2.380 (3)
Eu1-O2	2.358 (3)	Eu1-O6	2.389 (3)
Eu1-O3	2.296 (3)	Eu1-O7	2.318 (3)
Eu1-O4	2.449 (3)	Eu1-O8	2.513 (3)
O4-Eu1-O8	70.67 (11)	O3-Eu1-O2	87.09 (11)
O1-Eu1-O4	70.84 (11)	O7-Eu1-O1	93.59 (11)
O7-Eu1-O8	70.94 (11)	O3-Eu1-O1	97.94 (11)
O7-Eu1-O6	71.13 (11)	O7-Eu1-O2	102.06 (11)
O5-Eu1-O6	71.42 (10)	O6-Eu1-O8	123.95 (11)
O2-Eu1-O8	72.16 (11)	O5-Eu1-O4	128.21 (10)
O3-Eu1-O4	72.85 (10)	O6-Eu1-O4	135.92 (11)
O5-Eu1-O1	74.30 (10)	O5-Eu1-O8	138.68 (10)
O3-Eu1-O5	75.46 (10)	O2-Eu1-O4	140.62 (11)
O2-Eu1-O5	75.58 (11)	O1-Eu1-O8	140.75 (11)
O2-Eu1-O6	77.26 (12)	O7-Eu1-O5	142.00 (10)
O7-Eu1-O4	77.61 (11)	O3-Eu1-O7	142.51 (11)
O3-Eu1-O8	77.77 (11)	O3-Eu1-O6	145.92 (11)
O6-Eu1-O1	80.79 (11)	O2-Eu1-O1	147.06 (11)

The methyl H atoms were constrained to an ideal geometry (C– H = 0.96 Å), with $U_{iso}(H) = 1.5U_{eq}(C)$, but were allowed to rotate freely about the C–C bonds to fit the electron density. Other H atoms were positioned geometrically and treated as riding (C–H = 0.98 Å or 0.93 Å), with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of (I); displacement ellipsoids are drawn at the 30% probability level, and the phenyl rings of triphenylphosphine oxide and H atoms have been omitted for clarity.

This work was supported by the Ministry of Education of China (Z02873) and the Bureau of Education of Jiangxi Province (Z0283).

References

Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Haigh, C. W. (1995). Polyhedron, 14, 2871-2878.
- Kido, J. & Okamota, Y. (2002). Chem. Rev. 102, 2357–2368.

Pettinari, C., Marchetti, F., Cingolani, A., Drozdov, A., Timokhin, I., Troyanov, S. I., Tsaryuk, V., Zolin, V. (2004). *Inorg. Chim. Acta*, **357**, 4181–4190.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Tang, C.-W. & Vanslyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.

Xin, H., Li, F.-Y., Bian, Z.-Q. & Hunag, C.-H. (2003). J. Am. Chem. Soc. 125, 7166–7177.